博客
关于我
Luogu P4844 LJJ爱数数
阅读量:325 次
发布时间:2019-03-01

本文共 2772 字,大约阅读时间需要 9 分钟。

题目链接

题解

1 a + 1 b = 1 c \frac{1}{a}+\frac{1}{b}=\frac{1}{c} a1+b1=c1

b c + a c = ( a + b ) c = a b bc+ac=(a+b)c=ab bc+ac=(a+b)c=ab
g = gcd ⁡ ( a , b ) , A = a g , B = b g g=\gcd(a,b),A=\frac{a}{g},B=\frac{b}{g} g=gcd(a,b),A=ga,B=gb,则有
g ( A + B ) c = A B g 2 ( A + B ) c = A B g g(A+B)c=ABg^2\\ (A+B)c=ABg g(A+B)c=ABg2(A+B)c=ABg
由于 c ̸ = 0 , g ̸ = 0 c\not= 0,g\not= 0 c̸=0,g̸=0
A + B g = A B c = k \frac{A+B}{g}=\frac{AB}{c}=k gA+B=cAB=k
假设 k ≥ 2 k\geq 2 k2,那么 A B = k c AB=kc AB=kc,由于 gcd ⁡ ( A , B ) = 1 \gcd(A,B)=1 gcd(A,B)=1,因此 k ∣ A k|A kA k ∣ B k|B kB,不可能同时满足,那么 k ∤ A + B k\nmid A+B kA+B,但是 A + B = k g A+B=kg A+B=kg,推出矛盾,因此 k = 1 k=1 k=1

那么

A + B = g , A B = c A+B=g,AB=c A+B=g,AB=c
如果已经得到了 g g g A A A,满足题目要求的条件就是
gcd ⁡ ( A , g − A ) = 1 , ( g − A ) A ≤ n , A g ≤ n , ( g − A ) g ≤ n \gcd(A,g-A)=1,(g-A)A\leq n,Ag\leq n,(g-A)g\leq n gcd(A,gA)=1,(gA)An,Agn,(gA)gn
容易发现
gcd ⁡ ( A , g ) = 1 , 2 ≤ g ≤ 2 n , max ⁡ ( g − ⌊ n g ⌋ , 1 ) ≤ A ≤ min ⁡ ( ⌊ n g ⌋ , g − 1 ) \gcd(A,g)=1,2\leq g\leq \sqrt{2n},\max(g-\lfloor\frac{n}{g}\rfloor,1)\leq A\leq \min(\lfloor \frac{n}{g}\rfloor,g-1) gcd(A,g)=1,2g2n ,max(ggn,1)Amin(gn,g1)
因此反演求出一段区间内与 g g g互质的数的个数即可。

注意这题卡时限,必须预处理出每个数的约数,还要用邻接表存,不能用vector,否则会TLE……

代码

#include 
#include
#include
#include
template
T read(){ T x=0; int f=1; char ch=getchar(); while((ch<'0')||(ch>'9')) { if(ch=='-') { f=-f; } ch=getchar(); } while((ch>='0')&&(ch<='9')) { x=x*10+ch-'0'; ch=getchar(); } return x*f;}const int maxn=1414213;const int maxm=13288457;int p[maxn+10],prime[maxn+10],cnt,mu[maxn+10],pre[maxm+10],now[maxn+10],son[maxm+10],tot;int add(int a,int b){ pre[++tot]=now[a]; now[a]=tot; son[tot]=b; return 0;}int getprime(){ p[1]=mu[1]=1; for(int i=2; i<=maxn; ++i) { if(!p[i]) { prime[++cnt]=i; mu[i]=-1; } for(int j=1; (j<=cnt)&&(i*prime[j]<=maxn); ++j) { int x=i*prime[j]; p[x]=1; if(i%prime[j]==0) { mu[x]=0; break; } mu[x]=-mu[i]; } } for(int i=1; i<=maxn; ++i) { if(!mu[i]) { continue; } for(int j=1; j<=maxn/i; ++j) { add(i*j,i); } } return 0;}inline long long solve(int x,int l,int r){ long long ans=0; for(int i=now[x]; i; i=pre[i]) { int k=son[i]; ans+=mu[k]*(r/k-l/k); } return ans;}long long n;int main(){ getprime(); n=read
(); long long ans=0; int mx=sqrt(2*n)+0.5; for(int i=2; i<=mx; ++i) { ans+=solve(i,std::max(1ll,i-n/i)-1,std::min(n/i,i-1ll)); } printf("%lld\n",ans); return 0;}

转载地址:http://djwo.baihongyu.com/

你可能感兴趣的文章
NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
查看>>
NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
查看>>
nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
查看>>
NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
查看>>
Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
查看>>
NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
查看>>
NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
查看>>
NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
查看>>
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
查看>>
NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
查看>>
NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
查看>>